Search results for "Geometric invariant theory"

showing 2 items of 2 documents

A note on the unirationality of a moduli space of double covers

2010

In this note we look at the moduli space $\cR_{3,2}$ of double covers of genus three curves, branched along 4 distinct points. This space was studied by Bardelli, Ciliberto and Verra. It admits a dominating morphism $\cR_{3,2} \to {\mathcal A}_4$ to Siegel space. We show that there is a birational model of $\cR_{3,2}$ as a group quotient of a product of two Grassmannian varieties. This gives a proof of the unirationality of $\cR_{3,2}$ and hence a new proof for the unirationality of ${\mathcal A}_4$.

Pure mathematicsModular equationGeneral MathematicsModuli spaceModuli of algebraic curvesAlgebraMathematics - Algebraic GeometryMathematics::Algebraic GeometryMorphismGenus (mathematics)GrassmannianFOS: MathematicsGeometric invariant theoryAlgebraic Geometry (math.AG)QuotientMathematicsMathematische Nachrichten
researchProduct

Stability conditions and related filtrations for $(G,h)$-constellations

2017

Given an infinite reductive algebraic group $G$, we consider $G$-equivariant coherent sheaves with prescribed multiplicities, called $(G,h)$-constellations, for which two stability notions arise. The first one is analogous to the $\theta$-stability defined for quiver representations by King and for $G$-constellations by Craw and Ishii, but depending on infinitely many parameters. The second one comes from Geometric Invariant Theory in the construction of a moduli space for $(G,h)$-constellations, and depends on some finite subset $D$ of the isomorphy classes of irreducible representations of $G$. We show that these two stability notions do not coincide, answering negatively a question raise…

Pure mathematicsGeneral Mathematics01 natural sciencesHarder–Narasimhan filtrationCoherent sheafModuliMathematics - Algebraic GeometryMathematics::Algebraic Geometry0103 physical sciencesFOS: MathematicsComputer Science::General Literature14D20 14L24Representation Theory (math.RT)0101 mathematicsAlgebraic Geometry (math.AG)MathematicsComputer Science::Information Retrieval010102 general mathematicsQuiverAstrophysics::Instrumentation and Methods for AstrophysicsGIT quotientComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)16. Peace & justiceModuli spaceGIT quotientStability conditionAlgebraic groupIrreducible representationMSC: 14D20 14L24010307 mathematical physicsGeometric invariant theory[MATH.MATH-AG]Mathematics [math]/Algebraic Geometry [math.AG]Mathematics - Representation Theory
researchProduct